Solve the following recurrence relations. Do not use the master method. Show all of your work
Question
Recurrence Relation practice solve the following recurrence relations. Do not use the master method. Show all of your work.
-
- T(n)=2T(n-1)+c2n
- T(n)=7T(n/2)+c2n
- T(n)=2T(n/2)+n2
- T(n)=5T(n/4)+n1/2
Summary
The solution of the following recurrence relations is:
-
- O(n2n)
- O(n3)
- O(n2)
- O(n)
Explanation
1). T(n)=2T(n-1)+c2n
Using recursion function
Total cost=2n+2n+2n+2n………………..+2n
=2n*n terms
T(n)=2T(n-1)+c2n= O(n. 2n)
2). T(n)=7T(n/2)+c2n
Total cost=n2*(8/4)logn2<=n2*2logn2
= n2*n
= O(n3)
3). T(n)=2T(n/2)+n2
Total cost=n2(2-2/T)
= 2 n2-2n
= O(n3)
4). T(n)=5T(n/4)+n1/2
Total cost= n1/2 ((2)logn4+1-1)
= n1/2(4logn1/2-1)
= n1/2(4n1/2-1)
= 4n- n1/2
= O(n)
Also, read the Given below-defined UML class diagram.