Prove that the propositional formulas given in the question i, ii, and iii above having the corresponding properties, by means of semantic tableau.
Question
i〉¬(p→q)↔(p∧¬q)
ii〉(p→q) ∧ (q→r) ∧¬ (p→r)
iii〉((p∧q)→r)→(p→(q∧r))
Prove that the propositional formulas given in the question i, ii, and iii above having the corresponding properties, by means of semantic tableau.
Summary
Here, they are given 3 proofs in the question it has some properties of semantic tableau form. In the below drawn a tree diagrams for the given questions. So, for these types of questions, we need to start the proofs because it is a backend process.
Explanation
i〉¬(p→q)↔(p∧¬q)
¬ (р->a) <-> (p^а)
/\
[¬(p->q)]^(p^¬q) (p->q)^[¬(p^¬q)]
| |
¬(p->q), (p^¬q) (p->q), ¬(p^¬q)
| /\
p, ¬q , (p^¬q) ¬p, ¬(p^¬q) q,¬(p^¬q)
| /\ /\
p, ¬q, p, ¬q ¬p, ¬p ¬p, q q, ¬p q, p
| | • • |
p, ¬q ¬p q
•
ii). (p→q) ∧ (q→r) ∧¬ (p→r)
(p→q) ∧ (q→r) ∧¬ (p→r)
|
(p→q) , (q→r) ,¬ (p→r)
/\
¬p, (q→r) ,¬ (p→r) q,(q→r),¬ (p→r)
/\ /\
¬p, ¬q,¬ (p→r) ¬p ,r,¬ (p→r) q, ¬q,¬ (p→r) q, r,¬ (p→r)
| | | |
¬p, ¬q, p, ¬r ¬p ,r, p, ¬r q,¬ q ,p, ¬r q, r, p, ¬r
× × × ×
iii〉((p∧q)→r)→(p→(q∧r))
((p∧q)→r)→(p→(q∧r))
/\
¬ ((p∧q)→r) (p→(q∧r))
| /\
(p∧q),¬r ¬p (q∧r)
| | |
p, q, ¬r ¬ p q ,r
Also, the read another blog which is to write a relational schema for the diagram.